Differences in digestibility between beef cows receiving the same diet contribute to explain differences in feed efficiency

A. De La Torre¹, D. Andueza¹, R. Baumont¹, G. Renand², S. Rudel³, G. Cantalapiedra¹, P. Nozière¹

¹ INRA, UMR Herbivores, 63122 Saint Genès Champanelle

² INRA, UMR GABI, 78352 Jouy-en-Josas

³ INRA, UE Herbipôle, 63122 Saint Genès Champanelle

Introduction

- ⇒ Feed efficiency (FE) is a major issue for Ruminant production
 - Improvement of ruminant feed efficiency in particular with the use of local food especially grass and forages

 FAO, 2013

- ⇒ Residual Feed Intake (RFI) : one indicator of the FE
 - Difference between actual feed intake and expected feed intake according to metabolic requirements and production
 - Independant of the production traits (BW, level of production)

Physiological basis for RFI

- Considerable individual animal variation in feed intake as well as in RFI
 Russell et al., 2016
- Variability of FE between animals ≈ variability of FE between diets
 From data of Mialon et al, 2014
- Contributions of biological mechanims to Δ RFI, Richardson & Herd, 2004

Aim of the study and experimental design

Determination of individual variability of digestive efficiency

- Measurement of the apparent digestibility of contrasted diets in two divergent RFI non-pregant non-lactating beef cows.
- ⇒ RFI ranking: 12 weeks on grass silage diet distributed *ad libitum* when cows were 21 months old

4

Experimental design

4 periods: 2-3 weeks of adaptation + 1 week of total faeces collection

Measurements

- Individual feed intake : offers and refusals every day
- Weight of total faeces collection for each cows
- Dry matter (offers, refusals and faeces): oven at 60°C for 72 h
- Organic matter (offers, refusals and faeces): incineration of dried samples at 550°C for 6 h

DMI

OM digestibility (OMd)

Relation of DMI within diets

Similar results with OM digestibility

DMI and OM digestibility within diet are repeatable

Results: Dry matter intake (DMI)

DMI_maize silage and concentrate (kg/d, average P3 and P4)

DMI_hay (kg/d, average P1 and P2)

 Δ = diff. between the largest and the smallest value

- Variabilty is important among individuals
- Cows which eat the most hay are globally the ones which eat the most maize silage and concentrate
- No effect of RFI ranking on DMI (P=0.27), even when expressed per kg BW, BW^{0.75}

Variability of apparent OM digestibility

Average OM digestibility of Maize silage and concentrate (%)

Average OM digestibility of hay (%)

- OMd ranged from 5.8 (MS+CO diet) to 7 points (hay diet)
- The cows' ranking is similar between diets
- OM digestibility is 1.02 > in low-RFI than in high-RFI cows (P<0.01)

Conclusions of this experiment

DMI and OMd vary among animals

 For a given diet, the ranking of cows according to DMI and OMd is repeatable

 Under our conditions, animals with higher feed efficiency exhibit higher digestive efficiency regardless the type of diet

Relationships between OMD and RFI

- Low-RFI cows tended to have a greater digestive potential than high-RFI cows
- But RFI test and digestibility measurements were not performed in the same time preservation of FE according to physiological stage and diet?

Thank you for your attention

Acknowlegments:

I. Constant, L. Genestoux, F. Picard, D. Roux for technical expertise, ApisGene (C. Capel) for funding

Apparent digestibility of OM

OM digestibility is 1.02 fold higher in low-RFI than in high-RFI cows